A clustering algorithm is presented in order to group time series of maxima for pair of random variables recorded at different stations. The method is based on two kinds of dissimilarity measure. The first one involves the distance of the marginal distributions; the second one involves the distance between the respective copulas. In both cases, a Wasserstein metric is used. For the estimation, we rely on tools for extreme-value distributions and copulas.

Regionalization Methods for Compound Extremes Based on the Wasserstein Distance

Regina Castrovilli;Fabrizio Durante;Daniela Gallo;Gianfausto Salvadori
2025-01-01

Abstract

A clustering algorithm is presented in order to group time series of maxima for pair of random variables recorded at different stations. The method is based on two kinds of dissimilarity measure. The first one involves the distance of the marginal distributions; the second one involves the distance between the respective copulas. In both cases, a Wasserstein metric is used. For the estimation, we rely on tools for extreme-value distributions and copulas.
2025
9783031644306
9783031644313
File in questo prodotto:
File Dimensione Formato  
25_Castrovilli_et_al_SIS2024.pdf

non disponibili

Tipologia: Versione editoriale
Licenza: Copyright dell'editore
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/549806
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact