Deep eutectic solvents (DESs) are environmentally friendly solvents formed by combining hydrogen bond donors and acceptors, resulting in a eutectic mixture with a lower melting point than the individual components. While there is extensive research on the electrochemical synthesis of platinum nanoparticles in DESs, to the best of our knowledge, there are no studies on the chemical reactivity of platinum(II) complexes in these systems. This study investigates the simple model reaction between K2PtCl4 and ethylenediamine (en), exploring the behaviour in DES environment, to optimize the synthesis of simple cisplatin-like platinum compounds with the potential objective of improving the traditional methods, decreasing the number of steps required for obtaining target compounds and reducing chemical waste. The reactions were performed in two hydrophilic DESs: choline chloride:glycerol 1:2 (glyceline, GL) and choline chloride:ethylene glycol 1:2 (ethaline, EG). The experiments, conducted in a 70% (v/v) DES and 30% 1:1 H2O/D2O mixture to allow for direct NMR analysis, revealed that en quickly formed [PtCl2(en)], which further reacted to produce [Pt(en)2]Cl2. Reaction products were characterised by 1D (1H and 195Pt{1H}) and 2D ([1H,13C]-HSQC and [1H,15N]-HSQC) NMR experiments. The discolouration of solutions, due to the consumption of K2PtCl4, and the precipitation of the purple Magnus salt [Pt(en)2][PtCl4] occurred over time. The main observed difference between the two solvent mixtures was the slower reactivity in glyceline, due to the much higher viscosity of the solution. Diffusion-ordered spectroscopy (DOSY) indicated lower water mobility in DES mixtures than pure water, with the reaction products closely associated with DES molecules.

Reactive Behaviour of Platinum(II) Salts with Ethylenediamine in Sustainable Water/Choline Chloride-Based Deep Eutectic Solvents Mixtures

Garofalo, Nicola
Primo
;
Messa, Francesco;Fanizzi, Francesco Paolo;Salomone, Antonio;Margiotta, Nicola;Papadia, Paride
Ultimo
2025-01-01

Abstract

Deep eutectic solvents (DESs) are environmentally friendly solvents formed by combining hydrogen bond donors and acceptors, resulting in a eutectic mixture with a lower melting point than the individual components. While there is extensive research on the electrochemical synthesis of platinum nanoparticles in DESs, to the best of our knowledge, there are no studies on the chemical reactivity of platinum(II) complexes in these systems. This study investigates the simple model reaction between K2PtCl4 and ethylenediamine (en), exploring the behaviour in DES environment, to optimize the synthesis of simple cisplatin-like platinum compounds with the potential objective of improving the traditional methods, decreasing the number of steps required for obtaining target compounds and reducing chemical waste. The reactions were performed in two hydrophilic DESs: choline chloride:glycerol 1:2 (glyceline, GL) and choline chloride:ethylene glycol 1:2 (ethaline, EG). The experiments, conducted in a 70% (v/v) DES and 30% 1:1 H2O/D2O mixture to allow for direct NMR analysis, revealed that en quickly formed [PtCl2(en)], which further reacted to produce [Pt(en)2]Cl2. Reaction products were characterised by 1D (1H and 195Pt{1H}) and 2D ([1H,13C]-HSQC and [1H,15N]-HSQC) NMR experiments. The discolouration of solutions, due to the consumption of K2PtCl4, and the precipitation of the purple Magnus salt [Pt(en)2][PtCl4] occurred over time. The main observed difference between the two solvent mixtures was the slower reactivity in glyceline, due to the much higher viscosity of the solution. Diffusion-ordered spectroscopy (DOSY) indicated lower water mobility in DES mixtures than pure water, with the reaction products closely associated with DES molecules.
File in questo prodotto:
File Dimensione Formato  
molecules-30-01890.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/551386
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact