Datta and Johnsen (Des Codes Cryptogr 91:747–761, 2023) introduced a new family of evaluation codes in an affine space of dimension ≥ 2 over a finite field Fq where linear combinations of elementary symmetric polynomials are evaluated on the set of all points with pairwise distinct coordinates. In this paper, we propose a generalization by taking low dimensional linear systems of symmetric polynomials. Computation for small values of q = 7, 9 shows that carefully chosen generalized Datta–Johnsen codes [1/2q(q-1), 3, d have minimum distance d equal to the optimal value minus 1.

Evaluation codes arising from symmetric polynomials

Gatti, Barbara;Schulte, Gioia
2025-01-01

Abstract

Datta and Johnsen (Des Codes Cryptogr 91:747–761, 2023) introduced a new family of evaluation codes in an affine space of dimension ≥ 2 over a finite field Fq where linear combinations of elementary symmetric polynomials are evaluated on the set of all points with pairwise distinct coordinates. In this paper, we propose a generalization by taking low dimensional linear systems of symmetric polynomials. Computation for small values of q = 7, 9 shows that carefully chosen generalized Datta–Johnsen codes [1/2q(q-1), 3, d have minimum distance d equal to the optimal value minus 1.
File in questo prodotto:
File Dimensione Formato  
DCC2025Gatti.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 287.71 kB
Formato Adobe PDF
287.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/554467
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact