In this paper we investigate the use of Deep Learning (DL) methods for Dialectal Arabic Sentiment Analysis. We propose a DL model that combines long-short term memory (LSTM) with convolutional neural networks (CNN). The proposed model performs better than the two baselines. More specifically, the model achieves an accuracy between 81% and 93% for binary classification and 66% to 76% accuracy for three-way classification. The model is currently the state of the art in applying DL methods to Sentiment Analysis in dialectal Arabic.
LSTM-CNN Deep Learning Model for Sentiment Analysis of Dialectal Arabic
Saad M.Membro del Collaboration Group
;
2019-01-01
Abstract
In this paper we investigate the use of Deep Learning (DL) methods for Dialectal Arabic Sentiment Analysis. We propose a DL model that combines long-short term memory (LSTM) with convolutional neural networks (CNN). The proposed model performs better than the two baselines. More specifically, the model achieves an accuracy between 81% and 93% for binary classification and 66% to 76% accuracy for three-way classification. The model is currently the state of the art in applying DL methods to Sentiment Analysis in dialectal Arabic.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


