The global need for tissue and organ transplantation paved the way for plant-based scaffolds as cheap, ethical, and valuable alternatives to synthetic and animal-derived matrices for tissue regeneration. Over the years, the field has outgrown its initial scope, including the development of tissue models, platforms for drug testing and delivery, biosensors, and laboratory-grown meat. In this scoping review, we aimed to shed light on the frequency of the use of different plant matrices, the main techniques for decellularization, the functionalization methods for stimulating mammalian cell attachment, and the main results. To that purpose, we searched the keywords “decellularized” AND “scaffold” AND (“plant” OR “vegetable”) in online-available databases (Science Direct, Scopus, PubMed, and Sage Journals). From the selection and study of 71 articles, we observed a multitude of plant sources and tissues, along with a large and inhomogeneous body of protocols used for decellularization, functionalization and recellularization of plant matrices, which all led to variable results, with different extents of success (mostly in vitro). Since the field of plant-based scaffolds shows high potential for growth in the next few years, driven by emerging biotechnological applications, we conclude that future research should focus on plant sources with low economic and environmental impacts while also pursuing the standardization of the methods involved and a much deeper characterization of the scaffold performance in vivo.

Plant-Based Scaffolds for Tissue Engineering: A Review

Maria Isabela Vargas-Ovalle
Primo
;
Christian Demitri
Secondo
;
Marta Madaghiele
Ultimo
2025-01-01

Abstract

The global need for tissue and organ transplantation paved the way for plant-based scaffolds as cheap, ethical, and valuable alternatives to synthetic and animal-derived matrices for tissue regeneration. Over the years, the field has outgrown its initial scope, including the development of tissue models, platforms for drug testing and delivery, biosensors, and laboratory-grown meat. In this scoping review, we aimed to shed light on the frequency of the use of different plant matrices, the main techniques for decellularization, the functionalization methods for stimulating mammalian cell attachment, and the main results. To that purpose, we searched the keywords “decellularized” AND “scaffold” AND (“plant” OR “vegetable”) in online-available databases (Science Direct, Scopus, PubMed, and Sage Journals). From the selection and study of 71 articles, we observed a multitude of plant sources and tissues, along with a large and inhomogeneous body of protocols used for decellularization, functionalization and recellularization of plant matrices, which all led to variable results, with different extents of success (mostly in vitro). Since the field of plant-based scaffolds shows high potential for growth in the next few years, driven by emerging biotechnological applications, we conclude that future research should focus on plant sources with low economic and environmental impacts while also pursuing the standardization of the methods involved and a much deeper characterization of the scaffold performance in vivo.
File in questo prodotto:
File Dimensione Formato  
polymers-17-02705-v2.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/562066
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact