In this paper we study the complemented subspaces of the spaces $(l^p)^\N\cap l^q(l^q)$, with $1\leq p<q\leq \infty$ or $q=0$, thereby showing that if $(\l^p)^\N\cap l^q(l^q)=F\oplus G$ then either $F$ or $G$ contains a complemented copy of the whole space.
On complemented subspaces of the spaces $(ell^p)^Ncapell^q(ell^q)$
ALBANESE, Angela Anna;MOSCATELLI, Vincenzo
2001-01-01
Abstract
In this paper we study the complemented subspaces of the spaces $(l^p)^\N\cap l^q(l^q)$, with $1\leq pFile in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.