A novel plane estimation algorithm from 3D range data is presented. The proposed solution is based on the minimization of a nonlinear prediction error cost function inspired by the mathematical definition of Gibbs' entropy. The method has been experimentally tested and compared with a standard implementation of the RANSAC algorithm. Results suggest that the proposed approach has the potential of performing better in terms of precision and reliability while requiring a lower computational effort.

Robust 3D Plane Estimation for Autonomous Vehicle Applications

DISTANTE, Cosimo;INDIVERI, GIOVANNI
2010-01-01

Abstract

A novel plane estimation algorithm from 3D range data is presented. The proposed solution is based on the minimization of a nonlinear prediction error cost function inspired by the mathematical definition of Gibbs' entropy. The method has been experimentally tested and compared with a standard implementation of the RANSAC algorithm. Results suggest that the proposed approach has the potential of performing better in terms of precision and reliability while requiring a lower computational effort.
2010
9783902661876
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/349075
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact