In this paper, we propose a discrete-time Sequential Quadratic Programming (SQP) algorithm for nonlinear optimal control problems. Using the idea by Hauser of projecting curves onto the trajectory space, the introduced algorithm has guaranteed recursive feasibility of the dynamic constraints. The second essential feature of the algorithm is a specific choice of the Lagrange multiplier update. Due to this ad hoc choice of the multiplier, the algorithm converges locally quadratically. Finally, we show how the proposed algorithm connects standard SQP methods for nonlinear optimal control with the Projection Operator Newton method by Hauser.

A projected SQP method for nonlinear optimal control with quadratic convergence

NOTARSTEFANO, Giuseppe;
2013-01-01

Abstract

In this paper, we propose a discrete-time Sequential Quadratic Programming (SQP) algorithm for nonlinear optimal control problems. Using the idea by Hauser of projecting curves onto the trajectory space, the introduced algorithm has guaranteed recursive feasibility of the dynamic constraints. The second essential feature of the algorithm is a specific choice of the Lagrange multiplier update. Due to this ad hoc choice of the multiplier, the algorithm converges locally quadratically. Finally, we show how the proposed algorithm connects standard SQP methods for nonlinear optimal control with the Projection Operator Newton method by Hauser.
2013
9781467357142
9781467357173
9781479913817
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/389698
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact