A filamentous fungus was isolated from Tuber borchii Vitt. fruiting bodies, and it was identified as an Arthrinium phaeospermum (Corda) M.B. Ellis strain, an “endophyte” that forms various associations with healthy leaves, stems, and roots of plants. Molecular analysis confirmed the association of this filamentous fungus with the ascocarps of all collection sites in Salento, Apulia (South Italy). An in vitro symbiosis system between Cistus creticus L. and T. borchii was set up; A. phaeospermum appears to be able to promote mycorrhiza formation in Cistus seedlings, inducing primary root shortening and an increase of secondary roots, similar to the effect of Mycorrhization Helper Bacteria (MHB). Compartmented and uncompartmented bioassays were carried out to investigate the effects of exudates/volatiles released by the truffle-hosted fungus on root architecture; the results showed root shortening in compartmented bioassay suggesting that volatiles released by the fungus alone are sufficient to alter root morphology in early phase of interaction before the mycorrhiza formation. The first evidence for an influence of a truffle-hosted fungus on ectomycorrhizal symbiosis establishment is reported.

Arthrinium phaeospermum isolated from Tuber borchii ascomata: the first evidence for a “Mycorrhization Helper Fungus”?

SABELLA, ERIKA;NUTRICATI, Eliana;APRILE, ALESSIO;MICELI, Antonio;DE BELLIS, Luigi
2015-01-01

Abstract

A filamentous fungus was isolated from Tuber borchii Vitt. fruiting bodies, and it was identified as an Arthrinium phaeospermum (Corda) M.B. Ellis strain, an “endophyte” that forms various associations with healthy leaves, stems, and roots of plants. Molecular analysis confirmed the association of this filamentous fungus with the ascocarps of all collection sites in Salento, Apulia (South Italy). An in vitro symbiosis system between Cistus creticus L. and T. borchii was set up; A. phaeospermum appears to be able to promote mycorrhiza formation in Cistus seedlings, inducing primary root shortening and an increase of secondary roots, similar to the effect of Mycorrhization Helper Bacteria (MHB). Compartmented and uncompartmented bioassays were carried out to investigate the effects of exudates/volatiles released by the truffle-hosted fungus on root architecture; the results showed root shortening in compartmented bioassay suggesting that volatiles released by the fungus alone are sufficient to alter root morphology in early phase of interaction before the mycorrhiza formation. The first evidence for an influence of a truffle-hosted fungus on ectomycorrhizal symbiosis establishment is reported.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/395484
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact