We consider a network scenario in which agents can evaluate each other according to a score graph that models some interactions. The goal is to design a distributed protocol, run by the agents, that allows them to learn their unknown state among a finite set of possible values. We propose a Bayesian framework in which scores and states are associated to probabilistic events with unknown parameters and hyperparameters, respectively. We show that each agent can learn its state by means of a local Bayesian classifier and a (centralized) Maximum-Likelihood (ML) estimator of parameter-hyperparameter that combines plain ML and Empirical Bayes approaches. By using tools from graphical models, which allow us to gain insight on conditional dependencies of scores and states, we provide a relaxed probabilistic model that ultimately leads to a parameter-hyperparameter estimator amenable to distributed computation. To highlight the appropriateness of the proposed relaxation, we demonstrate the distributed estimators on a social interaction set-up for user profiling.

Distributed Learning from Interactions in Social Networks

Sasso, F;Coluccia, A;Notarstefano, G
2018-01-01

Abstract

We consider a network scenario in which agents can evaluate each other according to a score graph that models some interactions. The goal is to design a distributed protocol, run by the agents, that allows them to learn their unknown state among a finite set of possible values. We propose a Bayesian framework in which scores and states are associated to probabilistic events with unknown parameters and hyperparameters, respectively. We show that each agent can learn its state by means of a local Bayesian classifier and a (centralized) Maximum-Likelihood (ML) estimator of parameter-hyperparameter that combines plain ML and Empirical Bayes approaches. By using tools from graphical models, which allow us to gain insight on conditional dependencies of scores and states, we provide a relaxed probabilistic model that ultimately leads to a parameter-hyperparameter estimator amenable to distributed computation. To highlight the appropriateness of the proposed relaxation, we demonstrate the distributed estimators on a social interaction set-up for user profiling.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/441244
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact