Hydroxyapatite (HA) nano powders (20-60 nm) were synthesized using a sol-gel route with calcium nitrate and phosphoric acid as calcium and phosphorus precursors, respectively. Double distilled water was used as a diluting media for HA sol preparation and ammonia was used to adjust the pH. After aging, the HA gel was dried at 65°C and calcined to different temperatures ranging from 200-800°C. The dried and calcined powders were characterized for phase composition using X-ray diffractometry, elemental dispersive X-ray and Fourier transform infra-red spectroscopy. The particle size and morphology were studied using transmission electron microscopy. Calcination revealed HA nano powders of increased particle size and crystallinity with increase in temperature. For all calcinations temperatures, the particle size distribution analysis of HA powders showed skewed distribution plot. At temperature of 700°C and above, formation of CaO was noticed which was attributed to phosphorous volatilization. This study showed that high purity HA with varying degrees of crystallinity could be obtained using this simple technique. © Indian Academy of Sciences.
Preparation and characterization of nano-hydroxyapatite powder using sol-gel technique
Sanosh K. P.;
2009-01-01
Abstract
Hydroxyapatite (HA) nano powders (20-60 nm) were synthesized using a sol-gel route with calcium nitrate and phosphoric acid as calcium and phosphorus precursors, respectively. Double distilled water was used as a diluting media for HA sol preparation and ammonia was used to adjust the pH. After aging, the HA gel was dried at 65°C and calcined to different temperatures ranging from 200-800°C. The dried and calcined powders were characterized for phase composition using X-ray diffractometry, elemental dispersive X-ray and Fourier transform infra-red spectroscopy. The particle size and morphology were studied using transmission electron microscopy. Calcination revealed HA nano powders of increased particle size and crystallinity with increase in temperature. For all calcinations temperatures, the particle size distribution analysis of HA powders showed skewed distribution plot. At temperature of 700°C and above, formation of CaO was noticed which was attributed to phosphorous volatilization. This study showed that high purity HA with varying degrees of crystallinity could be obtained using this simple technique. © Indian Academy of Sciences.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.