β-Tricalcium phosphate (β-TCP) nano powders (∼80 nm) were synthesized using a simple sol-gel route with calcium nitrate and potassium dihydrogenphosphate as calcium and phosphorus precursors, respectively. Double distilled water was used as a diluting media for β-TCP sol preparation and ammonia was used to adjust the pH. After aging, the β-TCP gel was dried at 40 °C and calcined to different temperatures ranging from 200 to 800 °C. The dried and calcined powders were characterized for phase composition using X-ray diffractrometry (XRD) and Fourier transform-infrared spectroscopy (FT-IR). The particle size and morphology was studied using Transmission electron microscopy (TEM). Calcination revealed that with increase in temperature, both the crystallinity and crystallite size of β-TCP particles increased. Particle size distribution analysis of the calcined β-TCP at 800 °C showed a narrow skewed distribution plot centered between 70 and 80 nm. This value was in closed agreement with particle size values obtained from XRD analysis (83 ± 6 nm). The present study showed that narrowly distributed, high crystalline, pure β-TCP could be obtained using this simple technique for biomedical applications. © 2009 Elsevier B.V. All rights reserved.
Sol-gel synthesis of pure nano sized β-tricalcium phosphate crystalline powders
Sanosh K. P.;
2010-01-01
Abstract
β-Tricalcium phosphate (β-TCP) nano powders (∼80 nm) were synthesized using a simple sol-gel route with calcium nitrate and potassium dihydrogenphosphate as calcium and phosphorus precursors, respectively. Double distilled water was used as a diluting media for β-TCP sol preparation and ammonia was used to adjust the pH. After aging, the β-TCP gel was dried at 40 °C and calcined to different temperatures ranging from 200 to 800 °C. The dried and calcined powders were characterized for phase composition using X-ray diffractrometry (XRD) and Fourier transform-infrared spectroscopy (FT-IR). The particle size and morphology was studied using Transmission electron microscopy (TEM). Calcination revealed that with increase in temperature, both the crystallinity and crystallite size of β-TCP particles increased. Particle size distribution analysis of the calcined β-TCP at 800 °C showed a narrow skewed distribution plot centered between 70 and 80 nm. This value was in closed agreement with particle size values obtained from XRD analysis (83 ± 6 nm). The present study showed that narrowly distributed, high crystalline, pure β-TCP could be obtained using this simple technique for biomedical applications. © 2009 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.