In this work, the sintering behaviour of hydroxyapatite (HA) at different temperatures was studied. Nano HA powders synthesized by sol-gel technique were uniaxially pressed at 30 MPa into pellets and cold isostatically pressed at 200 MPa. The pellets were sintered in air at temperatures ranging from 900 °C to 1400 °C with a holding time of 2 h. It was observed that, at a sintering temperature of 1200 °C when the material was composed of pure HA phase, the samples exhibited densities of > 98.5 % of the theoretical value and possessed a hardness value of 5.89 GPa. Decomposition of HA into the secondary phases of TCP and CaO was found to occur at 1300 °C and 1400 °C, respectively. Changes in the microstructure, relative density and hardness of the sintered HA ceramics with the sintering temperature were also analyzed. The variation in the hardness was found to be dependent on the relative density up to a threshold grain size limit of 2 μn. However, beyond this threshold, no correlation existed between the two properties. Porosity and grain size were found to play an important role in determining the properties of the sintered HA compacts. ©KIM and Springer.

Pressureless sintering of nanocrystalline hydroxyapatite at different temperatures

Sanosh K. P.;
2010-01-01

Abstract

In this work, the sintering behaviour of hydroxyapatite (HA) at different temperatures was studied. Nano HA powders synthesized by sol-gel technique were uniaxially pressed at 30 MPa into pellets and cold isostatically pressed at 200 MPa. The pellets were sintered in air at temperatures ranging from 900 °C to 1400 °C with a holding time of 2 h. It was observed that, at a sintering temperature of 1200 °C when the material was composed of pure HA phase, the samples exhibited densities of > 98.5 % of the theoretical value and possessed a hardness value of 5.89 GPa. Decomposition of HA into the secondary phases of TCP and CaO was found to occur at 1300 °C and 1400 °C, respectively. Changes in the microstructure, relative density and hardness of the sintered HA ceramics with the sintering temperature were also analyzed. The variation in the hardness was found to be dependent on the relative density up to a threshold grain size limit of 2 μn. However, beyond this threshold, no correlation existed between the two properties. Porosity and grain size were found to play an important role in determining the properties of the sintered HA compacts. ©KIM and Springer.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/452806
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact