Background For autonomous robot-delivered surgeries to ever become a feasible option, we recommend the combination of human-centered artificial intelligence (AI) and transparent machine learning (ML), with integrated Gross anatomy models. This can be supplemented with medical imaging data of cadavers for performance evaluation. Methods We reviewed technological advances and state-of-the-art documented developments. We undertook a literature search on surgical robotics and skills, tracing agent studies, relevant frameworks, and standards for AI. This embraced transparency aspects of AI. Conclusion We recommend "a procedure/skill template" for teaching AI that can be used by a surgeon. Similar existing methodologies show that when such a metric-based approach is used for training surgeons, cardiologists, and anesthetists, it results in a >40% error reduction in objectively assessed intraoperative procedures. The integration of Explainable AI and ML, and novel tissue characterization sensorics to tele-operated robotic-assisted procedures with medical imaged cadavers, provides robotic guidance and refines tissue classifications at a molecular level.

Operational framework and training standard requirements for {AI}-empowered robotic surgery

Fiorella Battaglia;
2020-01-01

Abstract

Background For autonomous robot-delivered surgeries to ever become a feasible option, we recommend the combination of human-centered artificial intelligence (AI) and transparent machine learning (ML), with integrated Gross anatomy models. This can be supplemented with medical imaging data of cadavers for performance evaluation. Methods We reviewed technological advances and state-of-the-art documented developments. We undertook a literature search on surgical robotics and skills, tracing agent studies, relevant frameworks, and standards for AI. This embraced transparency aspects of AI. Conclusion We recommend "a procedure/skill template" for teaching AI that can be used by a surgeon. Similar existing methodologies show that when such a metric-based approach is used for training surgeons, cardiologists, and anesthetists, it results in a >40% error reduction in objectively assessed intraoperative procedures. The integration of Explainable AI and ML, and novel tissue characterization sensorics to tele-operated robotic-assisted procedures with medical imaged cadavers, provides robotic guidance and refines tissue classifications at a molecular level.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/475664
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact