We consider four dimensional U(N) N = 4 SYM theory interacting with a 3d N = 4 theory living on a co dimension-one interface and holographically dual to the D3-D5 system without flux. Localization captures several observables in this dCFT, including its free energy, related to the defect expectation value, and single trace 1/2-BPS composite scalars. These quantities may be computed in a hermitian one-matrix model with non polynomial single-trace potential. We exploit the integrable Volterra hierarchy underlying the matrix model and systematically study its 1/N expansion at any value of the 't Hooft coupling. In particular, the strong coupling regime is determined - up to non-perturbative exponentially suppressed corrections - by differential relations that constrain higher order terms in the 1/N expansion. The analysis is extended to the model with SU(N) gauge symmetry by resorting to the more general Toda lattice equations.
1/N expansion of the D3-D5 defect CFT at strong coupling
M. Beccaria
;
2023-01-01
Abstract
We consider four dimensional U(N) N = 4 SYM theory interacting with a 3d N = 4 theory living on a co dimension-one interface and holographically dual to the D3-D5 system without flux. Localization captures several observables in this dCFT, including its free energy, related to the defect expectation value, and single trace 1/2-BPS composite scalars. These quantities may be computed in a hermitian one-matrix model with non polynomial single-trace potential. We exploit the integrable Volterra hierarchy underlying the matrix model and systematically study its 1/N expansion at any value of the 't Hooft coupling. In particular, the strong coupling regime is determined - up to non-perturbative exponentially suppressed corrections - by differential relations that constrain higher order terms in the 1/N expansion. The analysis is extended to the model with SU(N) gauge symmetry by resorting to the more general Toda lattice equations.File | Dimensione | Formato | |
---|---|---|---|
JHEP02(2023)208.pdf
accesso aperto
Tipologia:
Versione editoriale
Licenza:
Creative commons
Dimensione
690.18 kB
Formato
Adobe PDF
|
690.18 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.