We introduce and study a variational model for signal and image analysis based on Riemann-Liouville fractional derivatives. Both the one-dimensional and two-dimensional cases are studied. The model exploits a quadratic fitting data term together with both right and left Riemann-Liouville fractional derivatives as regularizing terms, with the aim of achieving an orientation-independent analysis.

Symmetrized fractional total variation for signal and image analysis

Antonio Leaci
;
Franco Tomarelli
2023-01-01

Abstract

We introduce and study a variational model for signal and image analysis based on Riemann-Liouville fractional derivatives. Both the one-dimensional and two-dimensional cases are studied. The model exploits a quadratic fitting data term together with both right and left Riemann-Liouville fractional derivatives as regularizing terms, with the aim of achieving an orientation-independent analysis.
File in questo prodotto:
File Dimensione Formato  
s13662-023-03762-8.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/506326
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact